Subzero Organ Preservation: What We're Learning and What This Could Mean for Organ Utilization

TODAY'S PRESENTER

Erik Finger MD, PhD Associate Professor, Division of Transplantation

Equipping a Modern Profession of Lifesavers in Organ Donation & Transplantation

Thursday, April 27, 2023, 2:00pm – 3:00pm ET

Continuing Education Information Evaluations & Certificates

Nursing

The Organ Donation and Transplantation Alliance is offering **1.0 hours of continuing education credit** for this offering, approved by The California Board of Registered Nursing, Provider Number CEP17117. No partial credits will be awarded. CE credit will be issued upon request within 30 days post-webinar.

CEPTC

The Organ Donation and Transplantation Alliance will be offering **1.0 Category I CEPTC credits** from the American Board for Transplant Certification. Certified clinical transplant and procurement coordinators and certified clinical transplant nurses seeking CEPTC credit must complete the evaluation form within 30 days of the event.

Certificate of Attendance

Participants desiring CE's that are not being offered, should complete a certificate of attendance.

- Certificates should be claimed within 30 days of this webinar.
- We highly encourage you to provide us with your feedback through completion of the online evaluation tool.
- Detailed instructions will be emailed to you within the next 24 hours.
- You will receive a certificate via email upon completion of a certificate request or an evaluation
- Group leaders, please share the follow-up email with all group participants who attended the webinar.

Alliance Leadership & Engaged Learning in Organ Donation & Transplantation

Deanna Fenton Senior Manager, Program **Development and** Operations

Need Assistance?

Contact Us via Zoom Chat, or info@organdonationalliance.org 786-866-8730

Meet Our Moderator

Greg Veenedaal DNP, MS, RN, CCRN-K, NEA-BC

Director of Organ Clinical Services

ORGAN, EYE AND TISSUE DONATION

Meet Our Presenter

Erik Finger MD, PhD

Associate Professor, Division of Transplantation

Cryobiology to Stabilize the Donor Organ

Erik B. Finger, MD, PhD

efinger@umn.edu

April 27, 2023

Disclosures: Existing patents on this technology

Geographic disparity in organ access reflects imbalance of supply and demand

Organs recovered but not transplanted — a missed opportunity

Standard static cold storage results in short acceptable preservation times

Typical and Maximum Preservation Times for Donated Organs

Tissue preservation: pick your temperature to change preservation limits

37 °C Body temperature 27 °C Temperature range-17 °C traditionally accessed for clinical organ preservation _7 °C Refrigeration Temperature range accessed –3 °C using an integrated approach to organ preservation Arctic and Antarctic -13 °C hibernating animals TransMedics –23 °C ... Effectively unlimited -140 °C storage times achieved ... -196 °C Human cells routinely cryopreserved

What would increasing preservation time mean?

Cold storage

- Time limited event
- Local allocation
- Regional sharing

Normothermic perfusion

- National sharing
- Daytime transplants

Partial freezing/ High subzero

- International sharing
- Some tolerance
 protocols
- Improved patient preparation

Cryopreservation

- Donor/recipient
 matching
- Tolerance protocols
- Elective procedures
- On demand organ supply (true organ bank)

Cryopreservation of organs for transplant

Organ banking:

Ice is the enemy -- how to avoid it, or, how to manage it

Rana sylvatica – wood frog

Bisishing Backstain fretrancia to Delating and chantil discussion to the training and the training the second seco

Freeze tolerance in nature – strategies for ice avoidance

Portal fish – antifreeze proteins

Wood frog – accumulate urea

11

Molecular Adaptations Supporting Freeze Tolerance

Hypometabolism & stress response

- Prepare by acquiring sufficient fuel reserves for long term survival without feeding
- Lower metabolic rate to 1-30% of normal resting rate
- Coordinate suppression of ATP-expensive cell functions: e.g. transcription, translation, cell cycle, active transport
- · Suppress enzyme function by post-translational modifications
- Epigenetic controls: e.g. DNA methylation, histone modifications, microRNA inhibition of mRNA transcripts
- Up-regulate cytoprotective mechanisms: e.g. chaperone proteins, antioxidant defense, anti-apoptosis, innate immunity defenses
- Stress-specific gene/protein expression & protein/enzyme regulatory modifications

Tardigrade (water bear) – dehydration

Molecular Physiology of Freeze Tolerance in Vertebrates, Storey 2017

Conventional cryopreservation by slow cooling results in extracellular ice

Conventional cryopreservation leads to cell injury

Limitations of conventional cryopreservation

Works for cells in suspension and small aggregates (embryos)

Ice still forms – cell injury occurs

Macroscopic destruction of tissue architecture

Some cells and tissues don't tolerate cryoprotective agents (CPA, ie, DMSO)

Fails in larger tissues and organs

Vitrification (from Latin vitreum, "glass" via French vitrifier) is the transformation of a substance into a glass, that is to say a non-crystalline amorphous solid.

Vitrolife

Development of CPAs

Permeating agents	Nonpermeating agents			
Small molecules	Sugars	Polymers		
Dimethyl sulphoxide	• Sucrose	Polyethylene glicol		
• Ethylene glycol	Trehalose	Polyvinyl pyrrolidone		
Propylene glycol	Raffinose	Hydroxy ethyl starch		
• Glycerol	 Mannitol 	• Ficoll		
Methanol	• Glucose	• Serum proteins (mixture)		
• Ethanol	• Galactose	Milk proteins (mixture)		
• Glycine betaine				

Table 1. Physical properties of cryoprotective agent cocktails^a

	6M Glycerol	DP6	V\$55	M22 (VS 22)
Melt temp (T m)	-26°C	-29.8°C	-38°C	\sim -59°C
Glass transition (T g)	\sim -100°C	-119°C	-123°C	\sim -122°C
Critical cooling rate	85°C∕min	${\sim}40^{\circ}\text{C/min}$	2.5°C/min	$0.1^{\circ}C/min$
Critical warming rate	3.2×10^{4} C/m	$\sim 200^{\circ} C/min$	50°C/min	$0.4^{\circ}C/min$
Concentration (mol/l)	6	6	8.4	9.3

^aReferences: [17,18,58].

Balancing CPA toxicity v. efficacy

Vitrification (from Latin vitreum, "glass" via French vitrifier) is the transformation of a substance into a glass, that is to say a non-crystalline amorphous solid.

Rewarming Large Systems is Still a Problem

But to successfully warm we need...

Speed up warming

Uniformly warm to avoid cracks

Convective rewarming

State of the art vitrification and rewarming 1984 to 2021

- Only one rabbit kidney has ever been vitrified and rewarmed with function in vivo (survival for 48 days).
- The kidney reperfused immediately and made urine
- Creatine rose to ~14 mg/dL, but then improved.
- Creatinine never fell below 3.3
- Anemia and hyperkalemia
- Never been repeated

Microwave oven

EM wavelength, energy, and penetration

Penetration in biologic tissue:

Dielectric heating

Solenoids and Ampere's Law

The magnetic concentrated into a nearly uniform field in the center of a long solenoid. The field outside is weaker and the lines representing the magnetic field are further apart.

Ampere's Law

Science Facts -

Radio frequency inductive heating through hysteresis losses

Nanowarming: <u>rapid</u> and <u>uniform</u> rewarming of vitrified material

-B Flux Density -B In Opposite Direction

Saturation

In Opposite Direction

Overall strategy for cryopreservation and Nanowarming of kidneys

Hypothermic Machine Perfusion Set-up

Nanoparticles: Colloidally stable, high heating, and biocompatible

New sIONP Perfuses in and Washes Out

Rat kidney 31 x 31 x 31 µm³

Rat kidney (31 x 31 x 31 µm³)

Loading and unloading of nanoparticles in rat livers

Control

CPA+IONP loaded

CPA+IONP washout

10mg Fe/mL sIONP Loaded

Neg. Ctrl (CPA loaded)

CPA loading and unloading must be gradual to avoid osmotic injury

Step loading

Ramp/step hybrid loading

Hypothermic Perfusion of CPA and sIONP – Vitrification – Nanowarming – sIONP and CPA washout

Cooling to a vitrified state

Vitrified organs and failure states

D. Liver is frozen, solution is vitrified

E. Liver and solution frozen

F. Liver and solution frozen with cracks

Sharma, Lee, ABME 2022

Cooling and heating performance in rabbit hearts

Nanowarming

Nanowarming is superior to conventional cryopreservation but suffers from CPA-induced injury

Nanowarming achieves physical success in multiple organ systems in rat and rabbit

⁴³ Sharma Advanced Science 2020

Sharma, Lee, ABME 2022

Gao, Namsrai Adv Mat Tech 2021 🗥

Organ Nanowarming: Physical and Functional Assessment

44

Alternative CPA with less toxicity

CPA candidates:

Components (gm/L)	VS55	VMP	VM3	CPR-S	M22
Ethylene Glycol		168.4	168.40	168.4	168.4
Formamide	139.6	128.6	128.60	128.6	128.6
DMSO	242.1	223.00	223.00	223.0	223.0
PVP (5000 kDa)			70		28
1,2-Propanediol (PG)	168.4				
X-1000 (polyvinyl alcohol)		10	10	10	10
Z-1000 (polyglycerol)		10	10	20	20
N-Methylformamide (g/L)				30	30
3-Methoxy,1,2- propanediol				40	40

Compare VMP to VS55:

Challenges for organ vitrification and nanowarming

Increasing system size leads to increased complexity in cryopreservation

Complexity

Applications

ATP-Bio Societal Benefits

UMN Center for Organ Preservation/BRI/ATP-bio

Collaborators:

- Erik Finger (Surgery)
- John Bischof (ME)
- Michael Etheridge (IEM)
- Christy Haynes (Chemistry)
- Mike Garwood (Radiology)
- Cari Dutcher (Mech Eng)
- John laizzo (Surgery)
- Alena Talkachova (Chem Eng)
- Mike McAlpine (Mech Eng)
- Mike Lottie (IEM)
- Jed Lewis (Organ Preservation Alliance)
- Seb Giwa (Sylvatica)
- Charles Lee (UNC Charlotte)
- Korkut Uygun (MGH)
- Mehmet Toner (MGH)

Laboratory Personnel:

- Anirudh Sharma
- Navid Manuchehrabadi
- Zhe Gao
- Bat-Erdene Namsrai
- Joseph Rao
- Li Zhang
- Zonghu Han
- Diane Tobolt
- Jacqueline Pasek-Allen
- Elliott Magnuson
- Srivasupradha Ramesh
- Lakshya Gangwar

Funding:

- UMN Faculty Research and Development
- NIH NHLBI
- NIH NIDDK
- Regenerative Medicine Minnesota
- National Science Foundation
- Organ Preservation Alliance

Convergent team science

Cell Biology Molecular Biology Genetics (Bio)Chemistry Metabolism Regenerative Medicine Surgery Immunology Ecology

Thermodynamics Heat Transfer Mass Transfer Nucleation Physics Chemical Kinetics Metabolic Eng Microfluidics MEMS Nanotechnology Tissue Engineering

Overarching challenges in stopping biological clock

A Special Thanks to Our Presenter

Erik Finger MD, PhD

Associate Professor, Division of Transplantation

Leadership & Engaged Learning in Organ Donation & Transplantation

Leadership & Engaged Learning in Organ Donation & Transplantation