Or Alliance Preventing Pediatric Liver Waitlist Deaths: A Call to Action!

TODAY'S PANELISTS

George Mazariegos Director, Pediatric Transplant Surgery

Elena Cavazzoni State Medical Director Health NSW Organ & Tissue Donation Service

Gordon Thomas Clinical Professor, Attending Surgeon the childr^en's hospital at Westmead The Sydney children's Hospitals Network

Wednesday, September 27, 2023, at 3:00pm – 4:00pm EDT

The Alliance is not an advocacy organization and always intends to maintain an objective and unbiased perspective.

....

		Chat	insplantation
COL			REDIER
	IVER		SERIES
	Constant Co: €veryor Co: €veryor To: €veryor		
The A	lliance is not an advoc		
	maintain an object	ive and unbiased pers	spective.

Participants

Chat

Record

Reactions

Apps

×

Unmute

Start Video

Kristina Wheeler Program Consultant

Alliance

Need Assistance?

Contact Us via Zoom Chat, or info@organdonationalliance.org 786-866-8730

Meet Our Moderator

Adam Griesemer, MD

Surgical Director, Pediatric Liver Transplant Program; Living Donor Liver Transplant Program

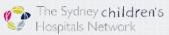
Alliance Leadership & Engaged Learning in Organ Donation & Transplantation

Meet Our Panelists

George Mazariegos

MD, FACS FAST Director, Pediatric Transplant Surgery

Elena Cavazzoni MB ChB, PhD, FCICM State Medical Director


UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

Gordon Thomas

MBBS, MS, MCH, FRACS Clinical Professor, Attending Surgeon

Preventing Pediatric Liver Waitlist Deaths: A Call to Action

George V. Mazariegos Chief, Pediatric Transplantation Chair, Starzl Network Twitter @CHPTransplant

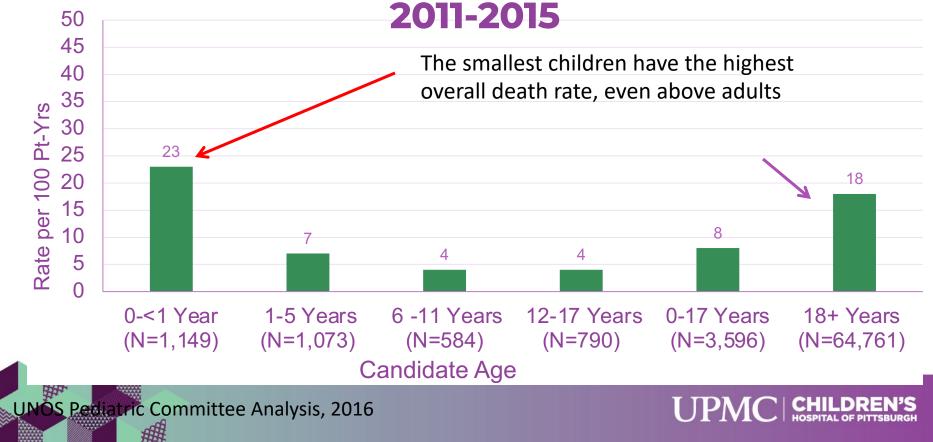
UPMC | CHILDREN'S

Objectives

- Overview the current status of U.S. liver wait list outcomes
- Overview U.S. and global data for the use of technical variants to address this issue
- Balance the roles of policy and surgical practice to achieve desired outcome.

True or False?

- Children don't die on the wait list
- The surgical approach to pediatric liver transplant has been well standardized internationally
- If you prioritize children in allocation, transplants will increase


CHILDREN DON'T DIE ON THE LIVER WAITLIST

Overall Death Rate per 100 Patient Years for Candidates on the Liver Wait-list during

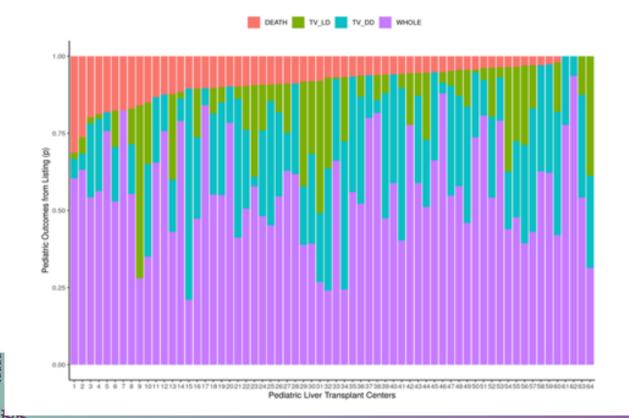
Pediatric Liver Experience (OPTN, 2004-2020)

- First time LT or kidney- liver LT children
- Centers had done at least 10 pediatric transplants in that time period

Liver Transplantation

Mazariegos et al, July 2023 (7): 671-682

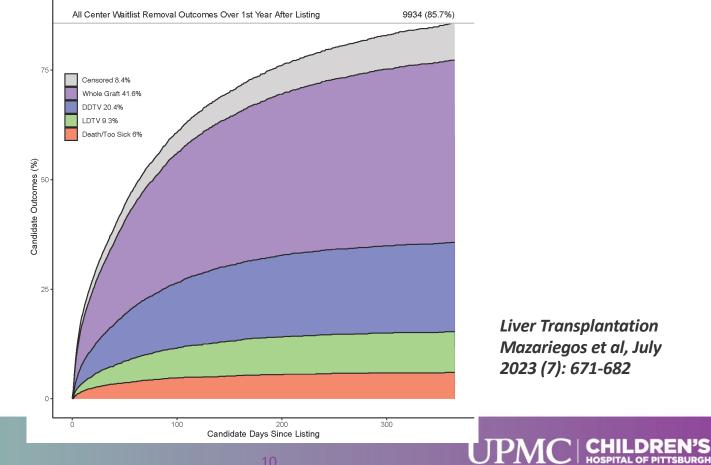
Analyzed wait list mortality, technical variant volumes, trends over time, and outcomes by center experience and graft type


Center use of technical variant grafts varies widely and impacts pediatric liver transplant waitlist and recipient outcomes in the United States

George V. Mazariegos¹ • | Emily R. Perito² • | James E. Squires¹ • | Kyle A. Soltys¹ • | Adam D. Griesemer³ • | Sarah A. Taylor⁴ • | Eric Pahl⁵ •

Results

- 9934 children listed for liver transplant
- 64 centers performed 7842 transplants
- 657 children died on the wait list (WL)
- Proportions of wait list mortality varied from 0-31% and the median WL mortality was 6%


Outcomes after listing for pediatric liver tx in the United States

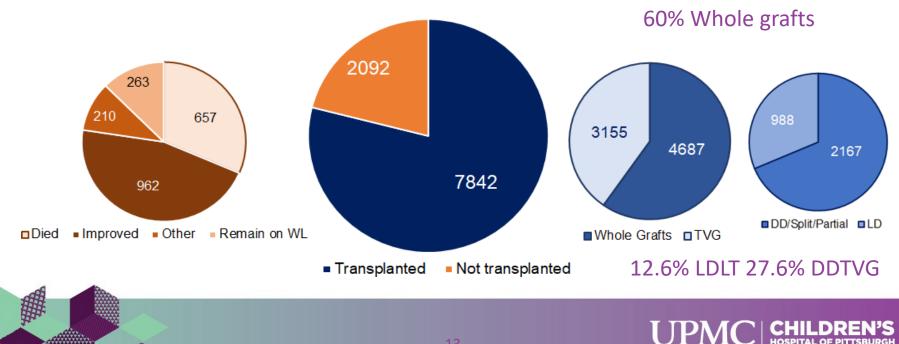
Liver Transplantation Mazariegos et al, July 2023 (7): 671-682

Overall United States Results

Liver Transplantation Mazariegos et al, July 2023 (7): 671-682

True or False?

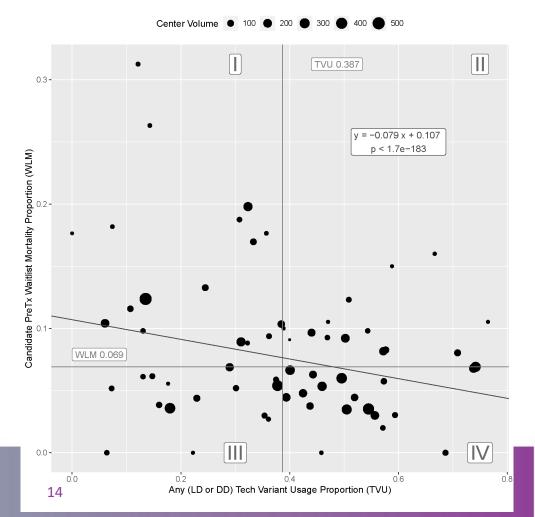
The approach to pediatric liver transplant is well standardized



Back to the Data (OPTN, 2004-2020)

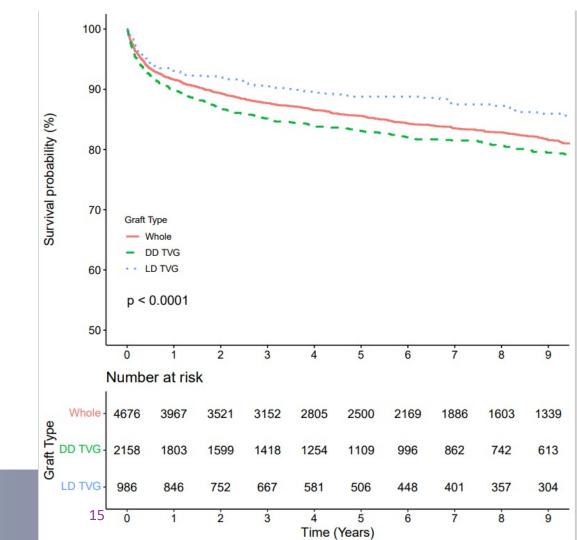
OUTCOMES

GRAFT TYPES



HOW DOES USE OF TECHNICAL VARIANT LIVERS AFFECT OUTCOMES?

- WIDE VARIATION IN PRACTICE
- NOT DEPENDENT ON CENTER SIZE
- DID NOT SIGNIFICANTLY CHANGE OVER TIME
- TECHNICAL VARIANT DECEASED DONOR AND LIVING DONOR INDEPENDENTLY AND IN COMBINATION WERE ASSOCIATED WITH BETTER OUTCOMES



Liver Transplantation Mazariegos et al, July 2023 (7): 671-682

IMPACT OF LDLT

- Recipients of Living
 Donor transplants had
 significantly increased
 survival from transplant
 compared to other graft
 types (HR 0.611, Cl (.40.92))
- **DD TV grafts** had equivalent outcomes to whole liver recipients (HR 1.066, Cl (.93-1.22))

Living donor versus deceased donor pediatric liver transplantation: a systematic review and meta-analysis.

10 studies included

1,622 living donor liver transplants

VS

6,326 deceased donor liver transplants

In children

Meta-analysis demonstrates greater benefit for LDLT over DDLT in terms of patient and graft survival

42% in risk of **death** at 1-year post-transplant

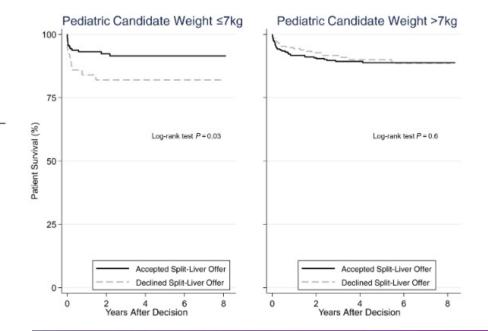
44% in risk of **graft loss** at 1-year post-transplant

Lower risk of rejection in pediatric LDLT recipients

Conclusion:

LDLT can address the issue of organ shortage and help decrease waitlist mortality while optimizing long-term survival of the pediatric liver transplant recipient.

Transplantation[®]


@TVDDirect

Split liver acceptance was associated with 63% reduction in mortality for candidates < 7 kg

TABLE 4. Pediatric Candidate Factors Associated With Mortality Following the Decision to Accept Versus Decline the split liver offer

Pediatric Characteristic	aHR	P Value
Accepted versus declined, ≤7 kg	0.170.370.80	0.01
Accepted versus decline, >7 kg	0.631.07	0.81
Per year of age	0.930.991.06	0.77
Per unit of PELD/MELD	$1.001.02_{1.04}$	0.04
Status 1	1.33 ^{3.96} 11.80	0.01
Diagnosis		
Biliary atresia	Reference	_
Metabolic disease*	_{0.34} 0.78 _{1.75}	0.54
Hepatoblastoma	_{0.81} 1.81 _{4.05}	0.15
Other*	1.02 ^{1.87} 3.43	0.04

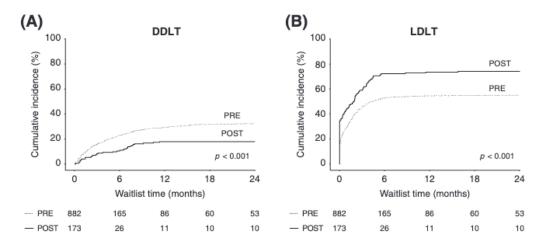
Pediatric survival following decision to accept or decline a split liver

UPMC | CHILDREN'S

Liver Transplantation 28 969-982 2022 AASLD.

True or False?

- Children don't die on the wait list
- The surgical approach to pediatric liver transplant has been well standardized
- If you prioritize children via allocation policy, transplants will increase



Waitlist mortality of young patients with biliary atresia: Impact of allocation policy and living donor liver transplantation

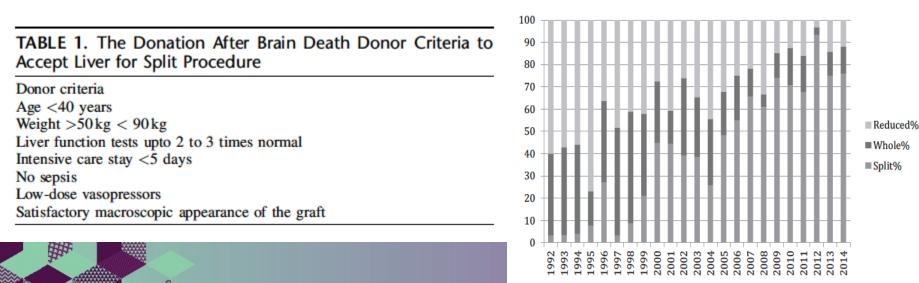
Hedayatullah Esmati¹ | Marieke van Rosmalen² | Patrick F. van Rheenen¹ | Marieke T. de Boer³ | Aad P. van den Berg⁴ | Hubert P. J. van der Doef¹ | Michel Rayar³ | Ruben H.J. de Kleine³ | Robert J. Porte³ | Vincent E. de Meijer³ | Henkjan J. Verkade¹

- Euro Transplant further prioritized children under the age 2 with BA in 2014
- Wait list mortality decreased from 6.7% to 2.3%
- Proportion of children undergoing
 DDLT decreased from 32% to 18%
- LDLT increased from 55% to 74%

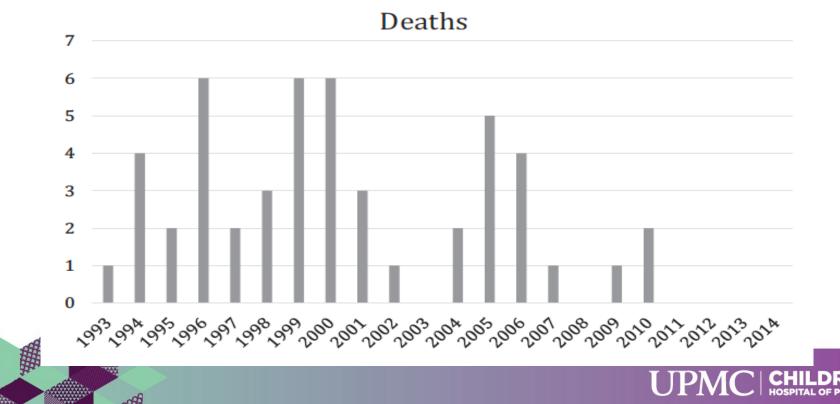
 $\mathbf{D}\mathbf{P}$

Liver Transplantation. 2022;00:1-7.

Intention to Split Policy


A Successful Strategy in a Combined Pediatric and Adult Liver Transplant Center

Narendra R. Battula, FRCS,* Marco Platto, MD,† Ravindar Anbarasan, FRCS,†


M. Thamara P. R. Perera, FRCS, *† Evelyn Ong, FRCS, † Garrett R. Roll, MD, * Ben-Hur Ferraz Neto, MD, *

Hynek Mergental, FRCS, * John Isaac, FRCS, * Paolo Muiesan, FRCS, *† Khalid Sharif, FRCS, †

and Darius F. Mirza, MS, FRCS*†

Mortality on the wait list (Battula, 2017)

A. Lauterio et al.

Outcomes of in situ split liver transplantation in Italy: results of an allocation policy for mandatory split in the best donors

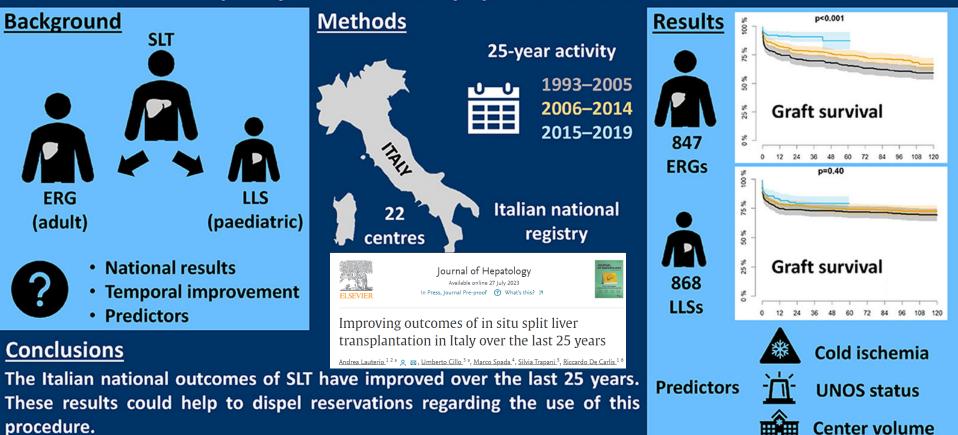
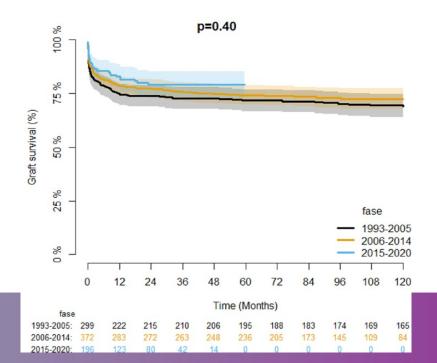


Table 4. Univariable and Multivariable Cox regression predicting graft failure after LLS SLT*.

Variables	Univariable HR (95%CI)	p- value	Multivariable HR (95%Cl)	p- value
Study period 2006-2014 vs 1993- 2005	0.828 (0.566;1.211)	0.33	0.836 (0.619;1.130)	0.24
Study period 2015-2019 vs 1993- 2005	0.678 (0.416;1.105)	0.12	0.809 (0.535;1.223)	0 .31
Recipient weight (5-10kg) vs <5kg	0.620 (0.336;1.143)	0.13	0.794 (0.481;1.310)	0.37
Recipient weight ≥10kg vs <5kg	0.948 (0.515;1.744)	0.86	1.068 (0.644;1.773)	0.80
Donor age (50-60 years) vs <50 years	1.208 (0.725;2.013)	0.47	1.138 (0.750;1.726)	0.55
Donor age >60 age vs <50	1.794 (0.660;4.878)	0.25	1.424 (0.663;3.060)	0.36
BSA ratio ≥2 vs <2	0.386 (0.224;0.664)	<0.001	0.658 (0.408;1.060)	0.085
CIT (6-10 hours) vs <6 hours	1.807 (1.157;2.822)	0.009	1.669 (1.149;2.426)	0.007
CIT ≥10 hours vs <6 hours	2.248 (1.135;4.451)	0.020	1.946 (1.118;3.389)	0.019
Status UNOS 2A vs 1	0.663 (0.377;1.167)	0.15	0.803 (0.488;1.322)	0.39
Status UNOS 2B vs 1	0.686 (0.449;1.051)	0.083	0.623 (0.399;0.974)	0.038
Status UNOS 3 vs 1	0.557 (0.373;0.832)	0.004	0.570 (0.374;0.870)	0.009
LLS centre volume ≥50 cases vs <50 cases	0.185 (0.053;0.646)	0.008	0.436 (0.177;1.073)	0.071
Retransplantation vs NO	2.834 (2.071;3.877)	<0.001	2.737 (1.907;3.930)	<0.001



Journal of Hepatology Available online 27 July 2023 In Press, Journal Pre-proof ⑦ What's this? 기

Improving outcomes of in situ split liver transplantation in Italy over the last 25 years

Andrea Lauterio ^{1 2 a} 🝳 🖂 , Umberto Cillo ^{3 a}, Marco Spada ⁴, Silvia Trapani ⁵, Riccardo De Carlis ^{1 6}

Technical Variant Liver Transplant Utilization for Pediatric Recipients: Equal Graft Survival to Whole Liver Transplants and Promotion of Timely Transplantation Only When Performed at High-volume Centers

Daniel J. Stoltz, MD,¹ Amy E. Gallo, MD,¹ Grant Lum, MS,¹ Julianne Mendoza, MD,² Carlos O. Esquivel, MD, PhD,¹ and Andrew Bonham, MD¹

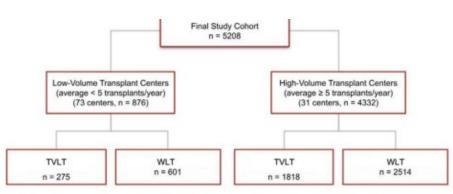
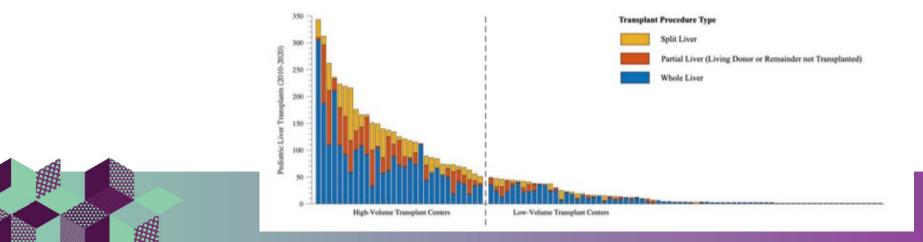
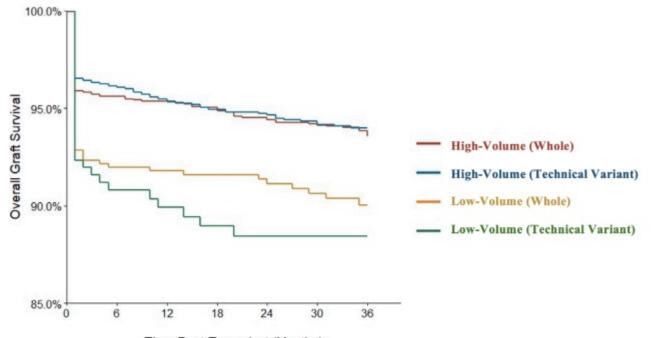
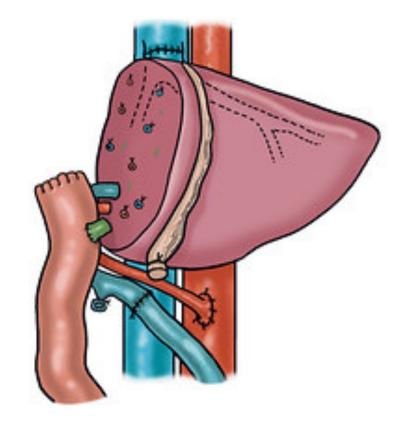
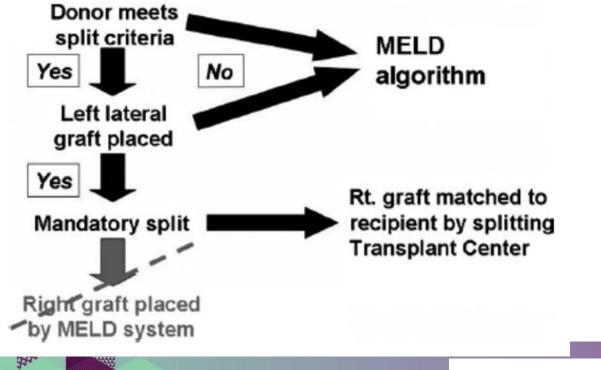




FIGURE 1. The study population consisting of primary pediatric liver transplants stratified by transplant center volume (high-volume and low-volume) and graft type (WLT and TVLT). TVLT, technical variant liver transplant; WLT, whole liver transplant.


Time Post-Transplant (Months)

Comparison	p
High-Volume (Whole) vs. High-Volume (Technical Variant)	0.057
High-Volume (Whole) vs. Low-Volume (Whole)	0.001
High-Volume (Technical Variant) vs. Low-Volume (Technical Variant)	
Low-Volume (Whole) vs. Low-Volume (Technical Variant)	<0.001



Putting this into practice: Policy, Team and System Considerations

Develop a policy both for pediatric prioritization and organ splitting

Liver Transplantation 23:86–95 2017 AASLD.

DOI: 10.1002/lt.26549

EDITORIAL

Waitlist mortality in pediatric liver transplantation: The goal is zero

- Technical variant grafts both LDLT and deceased donor split are critical to address the global waitlist need and achieve good outcomes
- Data driven policy sets a global example for prioritizing at risk candidates
- Multiple strategies can/should be used in parallel: Policy change focused on prioritization without enforceable surgical practice (i.e, mandatory splitting) may not have the desired effect
- Policy changes must be monitored effectively in order to optimize results and adapt.

Mazariegos, Perito, Soltys Liver Transplantation, 2022

Organ donation in Australia

Incorporating: NSW Bone Bank Lions NSW Eye Bank Australian Ocular Biobank

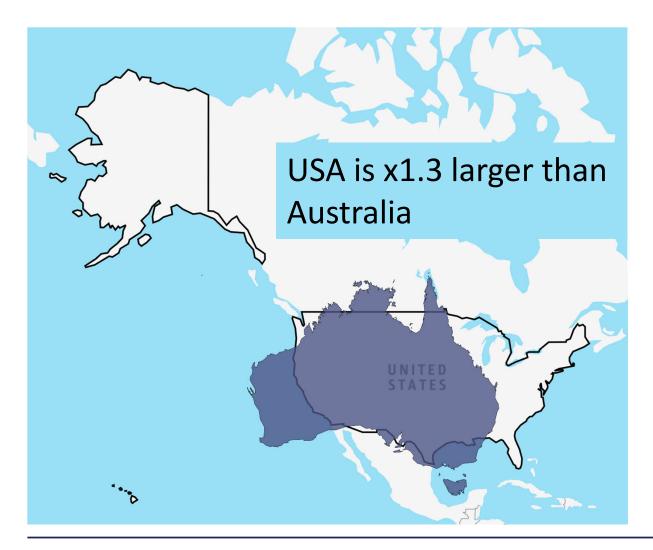
Disclosures **NONE**

Acknowledgement

Thank you to all the families of donors for their generous gift.

Facing the death of their loved one they say yes to donation

Overview


- Australian context
 Australia vs USA
- Australian donation rates

 National reform
- Split liver policy
 Donor profiles

Australia vs the USA

Texas population is x1.1 larger than Australia's population

Population densityAustralia9 per mi²USA53 per mi²

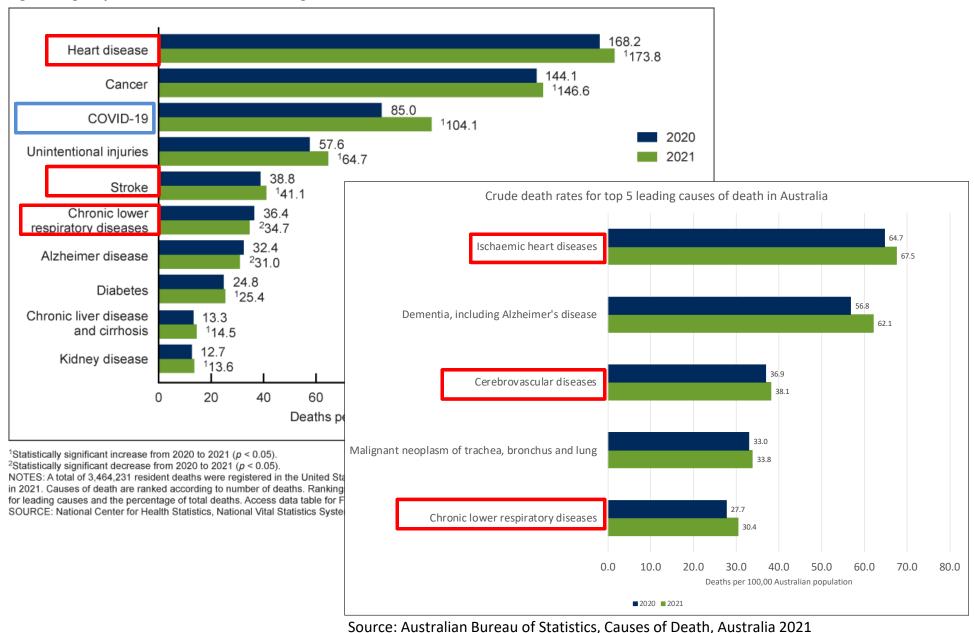
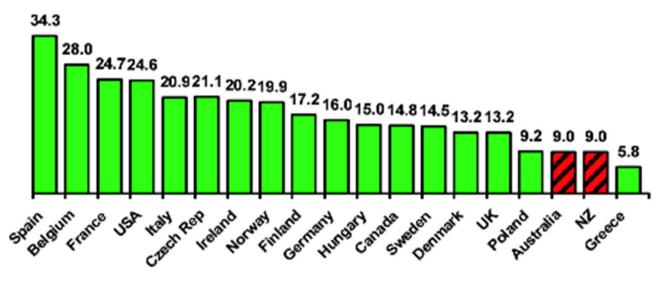


Figure 4. Age-adjusted death rate for the 10 leading causes of death in 2021: United States, 2020 and 2021



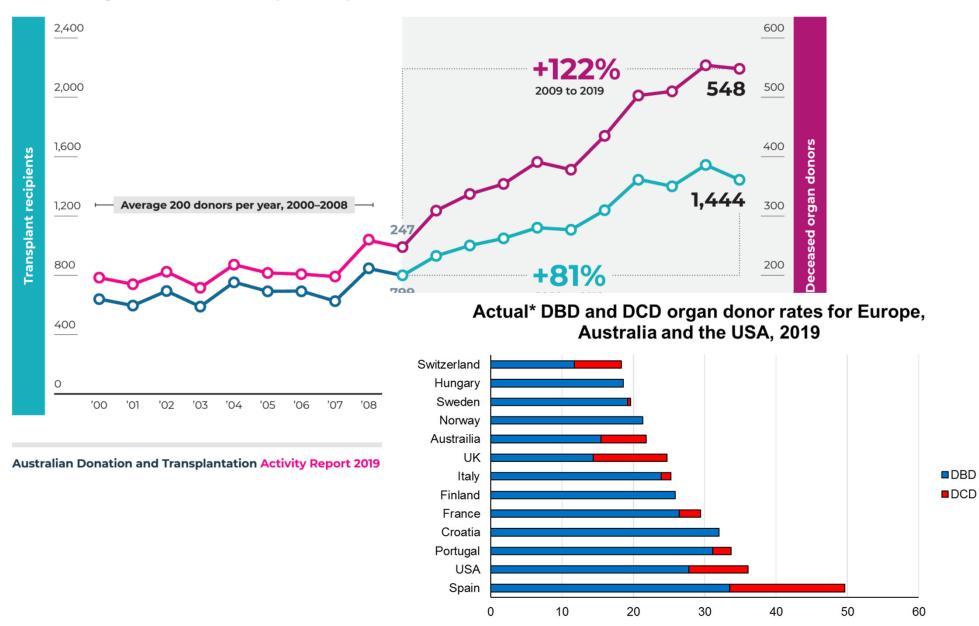
Australian donation journey

International Donor Statistics 2007

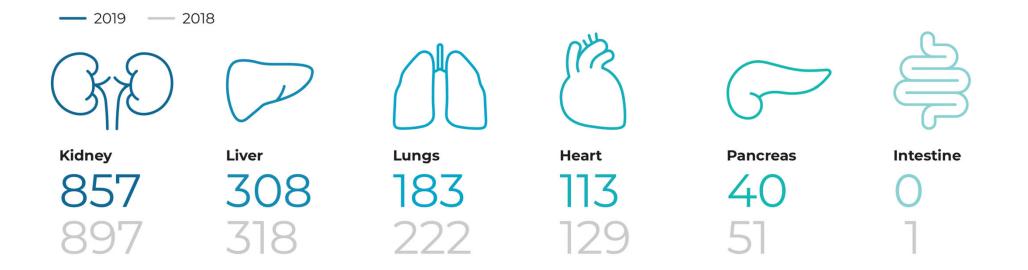
Source: IRODaT (International Registry of Organ Donation and Transplantation)

Australian Government

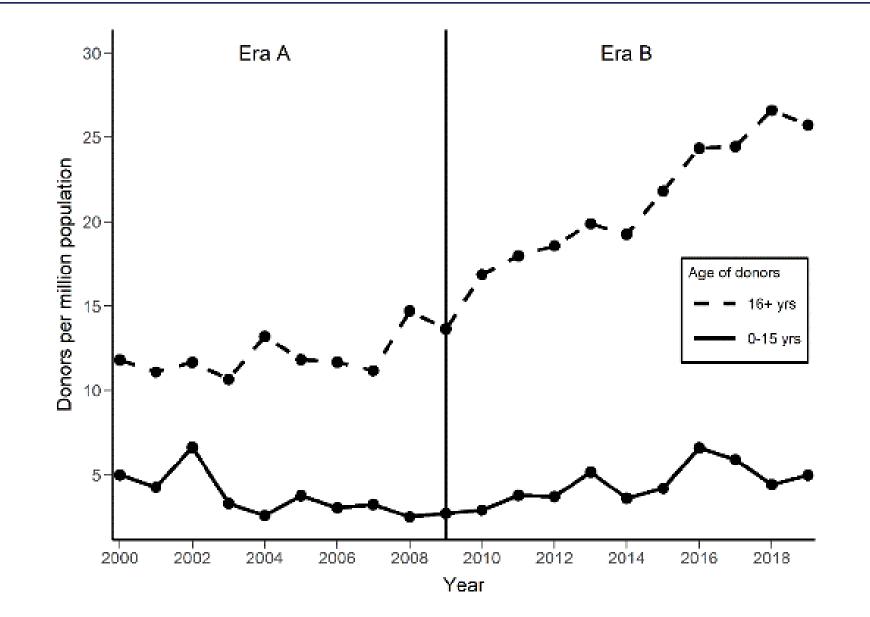
Organ and Tissue Authority


Establishment of DonateLife in all 8 states and territories

Australia healthcare system is underpinned by a universal health insurance system and around all organ transplantation is done in public institutions

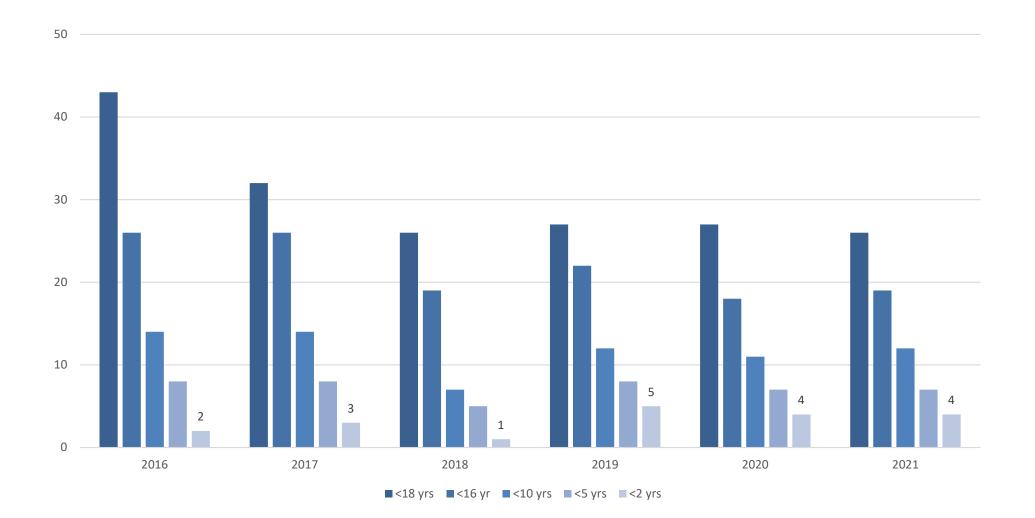


Deceased organ donation and transplant recipients 2000–2019

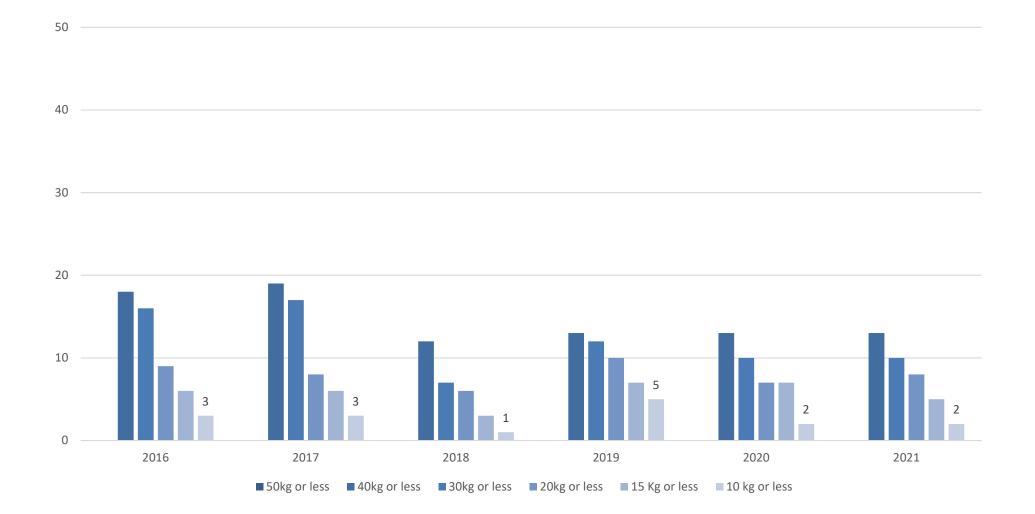


Australian Donation and Transplantation Activity Report 2019

Organs transplanted from deceased donors 2018 and 2019



Australian paediatric and non-paediatric organ donors per million population


Donor by age and year

Donor by weight and year

National guidelines

11.3 Paediatric liver and intestinal donation and allocation

Paediatric liver transplantation requires appropriate size matching. For very small infants requiring liver transplantation, a suitable donor may therefore include a very small paediatric donor. The lower size limit of potential donors includes neonatal donors.

Age and Size Range	Allocation
DNDD $- \le 18$ years, No lower limit for age or weight.	Liver donation: Refer to home state liver transplant unit first, if no suitable recipient, refer to other units on rotation. Preferential allocation of a donor
DCDD – \ge 3kg - \le 18 years will be considered for liver donation.	liver to recipients requiring combined liver and intestinal transplant, as guided by section 7.2 of the National SOP for Organ Allocation, Organ Rotation and Urgent Listing. Intestinal donation: All referrals to Victorian Liver Transplant Unit.
DCDD donors are not suitable for intestinal donation.	

Table 11.2: Recommendations for paediatric liver and/ or intestinal donation

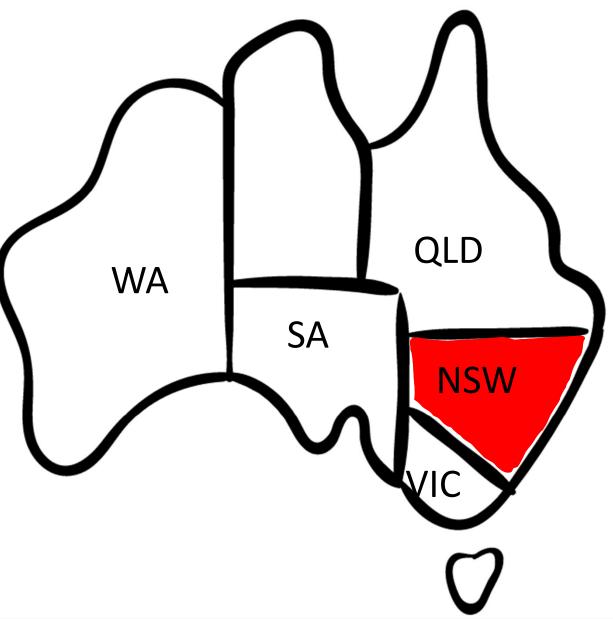
Paediatric donor livers must first be offered to paediatric recipients (<18 years of age). This is the case for whole liver or for both lobes of a split liver when the potential donor is less than 18 years of age. If there are no suitable paediatric recipients in the home state, it is then offered on national rotation for paediatric recipients.

Liver transplant units in Australia

NSW

Single unit with

- 1 Adult campus


- 1 Pediatric campus

VIC 1 Adult 1 Pediatric

QLD 1 Adult 1 Pediatric

WA 1 Adult

SA 1 Adult

Split liver policy in NSW

- Transplant team have a joint adult and paediatric recipient list
 - Paediatric recipients are given priority
- Since 2009 all NSW donor are assessed for suitability to split
- Assessment includes
 - Pre-operative factors
 - Age
 - Plasma sodium
 - Vasopressors requirements
 - History of cardiac arrest
 - Donor ICU LOS
 - ALT
 - Operative factors
 - Fat content
 - Vascular anatomy

Incorporating: NSW Bone Bank Lions NSW Eye Bank Australian Ocular Biobank

The University of Sydney

NSW Donors 2019 to June 2023

- 54 months

- 548 actual donors (10 donors per month)
 - 150 DCD (27%)
 - 398 DNDD (73%)
- Profile
 - Age
 - mean 47.5 years (range 1 month 84yrs)
 - Weight
 - Mean & median 172 lbs (range 13 360 lbs)
 - 43% female
 - Cause of death
 - Cerebral hypoxia/ischemia (42%)
 - 318 liver donors (58% of actual donors)
 - 27 DCD donors (18% of all NSW DCDD)

Split liver donor profile

- 39 out of 318 donors were split
- Age
 - mean 28.9 years (range 10 49yrs)
- Weight
 - Mean & median 150 lbs (range 90 240 lbs)
- 56% female
- Cause of death
 - Cerebral hypoxia/ischemia (46%)
 - Intracranial haemorrhage (31%)
 - Traumatic brain injury (23%)

Acknowledgement

Mark MacDonald

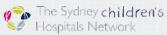
National Manager | Analytics and Technology Organ and Tissue Authority

A Special Thanks to Our Panelists

George Mazariegos

MD, FACS FAST Director, Pediatric Transplant Surgery

Elena Cavazzoni MB ChB, PhD, FCICM State Medical Director



Gordon Thomas

MBBS, MS, MCH, FRACS Clinical Professor, Attending Surgeon

Allance Conversation Series